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1. Introduction 

Gun tube wear and erosion has been a limiting factor in gun performance since their invention.  
Frederick Abel described gun tube erosion in the nineteenth century when he developed cordite.  
Since that time, erosion has had a cyclic history between performance requirements, resulting 
erosion issues, and subsequent palliatives.  Historically, palliatives have been additives to the 
propelling charge to create a protective surface coating, a cool boundary layer, or a heat flux 
impediment.  To date, this is the preferred method of mitigating erosion given an existing 
weapon-charge system. 

For over 10 years, the U.S. Army Research Laboratory (ARL) has been performing basic 
research in the area of gun tube wear and erosion, after a hiatus of about 10 years from the early 
1980s through the early 1990s.  Propellant chemistry and the interaction of the combustion 
products with the gun-tube wall has been the primary driver of the research.  Since WWII, it has 
been noted (Smith, 1954) that propellants containing nitramine are inherently more erosive than 
conventional propellants such as M30 (a triple-based propellant having a similar adiabatic flame 
temperature).  This claim was later verified by Ward et al. (1981, 1982).  The reason for the high 
erosive behavior of this propellant was unknown.  Surface chemical analysis of gun surfaces by 
Benet Laboratory (Kamdar and Venables, 1984) and ARL modeling (Conroy et al., 2001) 
assisted in developing an explanation for this behavior. 

The primary finding of this previous work was that the carbon monoxide in the combustion 
product gas dissociated on the surface with a very small energy barrier.  Subsequently, the free 
hydrogen scavenged the oxygen from the surface into water and the carbon diffused into the steel 
surface, resulting in a surface carburization (Conroy et al., 2001).  This transforms the steel into a 
cast iron, which reduces the surface melt temperature from 1723 K down to 1423 K.  RDX-based 
propellants have significantly higher amounts of carbon monoxide than the triple-base propellant 
M30, which supports the hypothesis of CO dissociation and subsequent carburization.   

The current report describes work involving advanced propellant formulations having relatively 
high concentrations of nitrogen in the product species. 

2. Discovery of Dynamic Nitriding 

Propellant erosivity characterizations were conducted in a blowout chamber fabricated from the 
breech and chamber of a 37-mm gun shortened and threaded to accept a retaining end cap for 
experimental samples.  A photograph is shown in figure 1 and sectional drawing is shown in 
figure 2.  This facility in various forms has been in use since WWII (Weigand, 1945). 
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Figure 1.  Photograph of an ARL 37-mm erosion fixture. 

Figure 2.  Drawing of an ARL 37-mm erosion fixture. 

Figure 3 shows a detail of an ARL erosion nozzle made typically of ASTM A723M-02 alloy 
(2006).  The entrance to the nozzle is opposite to the throat.  The nozzle profile was developed 
by continuously firing through a sample with a straight hole until the mass loss became 
consistent from one firing to the next.
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Figure 3.  ARL erosion fixture nozzle. 

Selected propellants that have recently been evaluated for erosivity are listed in table 1.  As the 
propellants were evaluated, all results supported the proposed carburization mechanism for 
erosion, until the testing of the Thiokol Gun Development propellant TGD-002.  While TGD-
002 has an adiabatic flame temperature similar to that of M8, the CO/CO2 ratio is about ten times 
higher than that of M8.  Considering only the carburization mechanism, one would predict that 
TGD-002 erosion would be much higher than that of M8.  What was found was that the TGD-
002 erosion was actually lower than that of M8, as shown in table 1.  This effect was also noted 
in Indian Head propellant IHGP-300, a 70% RDX system with a nitrocellulose and 
diazidonitrazapentane (DANPE) binder.  As shown in table 1, the mass loss from IHGP-300 was 
less than half of that of the M8, despite having a CO/CO2 ratio eight times that of the M8. 

Table 1.  Selected propellant properties and mass loss. 

Propellant Chamber Nozzle Wear 
 Temp F (J/g) Temp CO/CO2 N2/CO N2 (mg) 
JA2 3450 1152 2569 2.53 0.35 0.126 90 
PAP-8165 3419 1284 2444 8.29 0.78 0.271 62 
TGD-9/2/9 3410 1291 2375 19.55 0.77 0.300 80 
009+002 3410 1291 2375 19.55 0.77 0.300 104 
TGD-019 3268 1296 2298 15.59 0.86 0.294 40 
TGD-036 3191 1280 2238 18.26 0.84 0.292 57 
TGD-035 3181 1273 2226 24.40 0.81 0.295 66 
M43 3100 1186 2201 7.78 0.66 0.237 27 
M30 3035 1080 2190 3.10 1.08 0.280 21 
TGD-021  2795 1164 1995 22.27 0.91 0.305 5 
TGD-009 2577 1072 1898 20.26 0.67 0.257 21 
M8 (Ward et al., 1982) 
( d )

3768 1168 2922 1.44 0.49 0.146 241 
JA-2/ RPD351 3743 1172 2892 1.50 0.48 0.143 251 
TGD-002 3718 1354 2643 14.88 0.84 0.324 193 
IHGP-300 3725 1333 2730 4.13 0.89 0.284 114 
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It was hypothesized that high nitrogen propellants might “dynamically” nitride the inside bore 
surface of the erosion nozzle during firing.  This nitriding could occur over milliseconds, 
whereas typical gaseous nitriding can take hours or days.  We investigated this possibility by 
measuring the nitrogen content on the surface of test nozzles after firing, using resonant nuclear 
reaction analysis at the ARL ion accelerator facility shown in figure 4.  An energetic beam of 
protons was directed onto the surface, inducing the 15N(p,γ) reaction, and the characteristic 
gamma rays were detected using a scintillation detector near the analysis chamber (figure 5).  
Since this reaction occurs only at a particular ion energy, the beam energy was increased to 
query the nitrogen concentration at increasing depths into the sample; the gamma yield could 
then be calibrated to give a depth profile of nitrogen in the gun steel.  Figure 6 shows atomic 
nitrogen content vs. energy (depth) at various locations on the inner surface of an ARL erosion 
nozzle, which had high nitrogen propellant products exhausted through it. The resultant 
concentrations are as high as 9 atomic percent.  This places the nitriding at Fe4N levels. 

Figure 4.  ARL ion accelerator facility. 
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Figure 5.  Nuclear reaction analysis (NRA) chamber. 

Figure 6.  Depth profiles of nitrogen taken using NRA at four different positions 
relative to the inner exposed surface of the test nozzle. 
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Possible explanations for how surface nitriding can assist in erosion reduction come from surface 
chemistry, as well as from the binary phase diagram of iron nitride.   

Literature suggests that nitrogen on a steel surface may inhibit dissociation of CO (Ponec and 
van Barneveld, 1979).  Thus, dynamic nitriding can act to interrupt the primary driving reaction 
of the chemical erosion mechanism, which is the adsorption/dissociation of carbon monoxide on 
the surface.  Also, the presence of nitrogen takes up sites in solution with iron and could inhibit 
the subsurface diffusion of the free carbon into the steel.  

Carburization of the gun reduces the melt temperature of the surface from 1723 K to 1423 K.  
The binary iron-carbon phase diagram in figure 7 shows how this reduction in melt temperature 
occurs.  The virgin 4340 or ASTM A723M-02 (2006) steel begins with about 0.4% carbon.  As 
carbon is added to this mixture, the melt temperature continuously reduces until it stabilizes at 
1423 K, which defines the boundary between cast iron and steel. Once the carbon concentration 
exceeds 2.1%, the material is then cast iron.  Erosion calculations have shown that the surface 
can saturate with carbon providing the best boundary source available for diffusion (Conroy et 
al., 2001).  This enables the formation of substrate iron carbide at the maximum rate possible.  
As the ballistic cycle progresses the surface temperature rises, all the while carbon is diffusing 
and creating Fe3C.  Once the surface temperature reaches 1423 K, the energy balance on the 
surface including phase transformation results in macroscopic melting.  This is one of the 
primary mechanisms for the removal of surface and interfacial material (Conroy et al., 2001). 

The iron/nitrogen phase diagram presented in figure 8 (Guillermet and Du, 1994) demonstrates 
how nitrogen in solution with iron can be more resistant to erosion than carbon in solution with 
iron under ballistic conditions.  The phase transition from solid to liquid for iron nitride is shown 
as a constant 1683 K, between 7 and 20 atomic percent nitrogen.  This presents a remarkable 
260 K increase in the surface melt temperature over that of the iron carbide at 1423 K.  For 
chrome plated tubes, this increase is obtained at the weakest point of the system, which is at the 
interface between the chrome and steel at the bottom of cracks in the chrome coating (Conroy et 
al., 2001). This represents an enormous opportunity for improvement for gun systems in terms of 
tube life and possibly system performance. 

3. Temperature Reduction Due to Expansion 

In addition to the dynamic nitriding, nitrogen can also reduce the product gas temperature in 
regions of expansion due to higher intermolecular attraction forces and larger product molecular 
size through the Joule and Joule-Thomson effects. 
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Figure 7.  Iron/carbon phase diagram (Metals Handbook, 1973). 
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Figure 8.  Iron/nitrogen phase diagram (Guillermet and Du, 1994). 

IRON CARBON EQUILIBRIUM DIAGRAM

Carbon (weight %)

0.5 1.5 2.5 3.5 4.50.0 1.0 2.0 3.0 4.0 5.0

Te
m

pe
ra

tu
re

 (F
)

1000

1400

1800

2200

2600

1200

1600

2000

2400

2800

Te
m

pe
ra

tu
re

 (K
)

900

1100

1300

1500

1700

1900

800

1000

1200

1400

1600

1800

Austenite + Fe3C

Iron Fe3C Equilibrium-

Iron Graphite Equilibrium-

Source: Based on Metals Handbook 8th
Edition. Vol 8 "metallography Structures
and Phase Diagrams" (after John Chipman)

Ferrite + 
Austenite

Austenite
(Gamma Iron)

Solidus

Liquid + Austenite

2.08%

2.11%

0.53%
Delta Iron

Liquid + Delta Iron

1811

0.17%

Delta Iron + 
Austenite

1667

1768

Mushy State

Liquid

Liquidus
Liquid + Graphite

Fe3C
Liquidus
(calculated)

1421

1427

4.26%

4.36% Liquid + Fe3C

0.68%

0.77%

Curie Temp 1043
Ferrite

0.0218%

1011

1000

1185

0.096%

4340

Steel Cast Iron



 8

Two processes have been considered for their effect on temperature reduction:  isenthalpic 
expansion (throttling) and free expansion of gases (Sears and Salinger, 1975; Van Wylen and 
Sonntag, 1985).  These processes relate in some respects to the expanding gases found in a gun 
during the interior ballistic cycle.  The following analysis is an attempt to physically describe 
why the gases cool upon expansion as well as the effect that mixture composition might have 
upon the expanding combustion products. 

3.1 Isenthalpic Expansion 

To begin with a description of isenthalpic expansion, we write the enthalpy equation as the 
internal energy plus the work term pv as shown: 

 pvuh += . (1) 

The indefinite derivative of the enthalpy with no work is 

 VdPTdSdH += . (2) 

Using the identity  

 dP
T
VTdTCTdS

p
p ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−= , (3) 

one can show that for an isenthalpic process that 

 dTCdP
T
VTVdP p

p

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= , (4) 

and subsequently, 

 
h
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p P
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⎞
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∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= . (5) 

With some rearrangement, this reduces to the familiar expression for the Joule-Thomson 
coefficient 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞
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∂
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⎝
⎛
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= V
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VT
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T
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1µ . (6) 

If we assume an ideal gas, this expression reduces to zero, while if we assume a Van der Waals 
equation of state, then the Joule-Thomson relationship becomes the following: 

 ( )
( ) ⎟

⎟
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⎝
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When µ is equal to zero in this relationship the function defines the temperature inversion curve, 
which is the limit at which a specific species will cool if expanded when initially below the 
inversion temperature and heat if expanded above the inversion temperature.  The relationship of 
the inversion temperature is 

 
2

2
)(2

bRv
bvaTi

−
= . (8) 

From table 2, the inversion temperature shows that reducing or replacing the hydrogen with 
nitrogen would be beneficial from a temperature reduction point of view during an isenthalpic 
process.   

Table 2.  Van der Waals constants comparisons of products. 

Product Species Van der Waals Constant a 
(Intermolecular  Attractive 

Force Constant) 
(kJm3/kmole) 

 
Van der Waals Constant b 
(Molecular size constant) 

(m3/kmole) 

 
Inversion 

Temperature (K) 
(@ v = 0.4m3/kg) 

H2 25 0.0266 1000. 
N2 137 0.0387 7803 
CO 148 0.0395 8610 
CO2 365 0.0428 23032 
H2O 553 0.0305 24656 

 
Unfortunately, there will be a penalty in performance for such a propellant, because the impetus 
will suffer as the average molecular weight of the products is increased as equation 9 shows: 

 RTImpetus
MW

= . (9) 

3.2 Free Expansion 

Of course, what happens in a real gun is expansion with work.  An adiabatic system with no 
work undergoing free expansion might be more representative of what occurs before the throat of 
a nozzle.  In this case the internal energy is constant and the change in volume is accompanied 
by a change in temperature.  Differentiating the internal energy with the aforementioned 
constraints, as well as constant mass, results in 

 dV
V
UdT

T
UdU

NTNV ,,
⎟
⎠
⎞

⎜
⎝
⎛
∂
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∂
∂

= . (10) 

From this, we note that the change in internal energy is zero so that 
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V
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which is the differential Joule coefficient.  If we assume an ideal equation of state, this term 
becomes zero and the effect is lost.  However, if we assume the Van der Waals equation of state  

 

 ( ) nRTnbV
V
anP =−⎟⎟

⎠

⎞
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⎝

⎛
+ 2

2

, (12) 

then through the following identity computed through differentiation of the first and second laws 
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T
PT

V
U

VT

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ , (13) 

the following relationship can be derived describing the change in internal energy with respect to 
volume: 

 2

2

V
an

V
U

T

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ . (14) 

This implies that the larger the intermolecular attractive force the larger the temperature decrease 
will be.  Therefore, from table 1, the more hydrogen that can be replaced by nitrogen in the 
combustion products the lower the temperature will be in the entrance region of the nozzle.  This 
once again implies a negative impact upon the impetus of the propellant, as equation 9 shows. 

A general conclusion is that a reduction in expansion temperature due to the replacement of 
hydrogen with nitrogen in the products will be accompanied by a reduction in impetus for a gun 
propellant.  While the erosion might be reduced through the Joule and/or Joule-Thomson effects, 
the impetus of the propellant will decrease through the overall increase in average molecular 
weight.  Thus, there is an apparent balance between erosion and performance.  However, it may 
be possible to increase the loading density through advanced charge designs to overcompensate 
for the reduced impetus, which would result in an overall performance increase while reducing/ 
minimizing the erosion. 

4. Prenitriding 

The discovery of dynamic nitriding leads to an exciting corollary: prenitriding a gun tube could 
provide significant benefits.  Nitriding has been performed for over half a century on gun tubes 
(Di Pietro, 1947).  The M242 Bushmaster cannon has specifications stating that the bore can be 
either chrome plated or nitrided.  Current nitriding results in a very reproducible wear and barrel 
life in comparison to chrome plating, which is sometimes less reproducible (Waterfield, 2003).  
Unfortunately, nitrided M242 barrels do not have the erosion life of the chrome barrels.  We may 
now be able to explain this result. 
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Conventional nitriding produces an error function distribution of nitrogen in the surface.  
This distribution ranges from a hard white layer (FeN) on the surface, through all the 
substoichiometric nitrides of iron, to deep into the iron where there is no nitrogen present.  
This implies a melting temperature range from as low as 1200 K at the surface up to the optimal 
temperature of 1683 K where the nitrogen content ranges from 7–20 atomic percent (figure 8).  
Unfortunately, by the time the erosion progresses until the surface has an optimal melt 
temperature there is not much nitrogen left, as shown in figure 9 in the traditional nitride profile. 

Figure 9.  Traditional and preferred nitrogen profiles. 

Conversely, if the nitrogen profile appears as in the desired nitrogen profile of figure 9, then the 
benefit is realized throughout the life of the gun tube.  This profile may be reached through laser 
nitriding (Schaaf, 2002). 

The benefit could also be realized if the surface of chromed or otherwise coated tubes were pre-
nitrided to protect the interface between the coating and substrate steel from degradation when 
cracks occur. 
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5. Conclusions 

The dynamic nitriding and the temperature reduction due to propellant gas expansion have been 
shown to lead to remarkably reduced erosion resulting from propellant formulations having 
relatively high nitrogen content. 

The new energetic propellant formulations that include “high nitrogen” ingredients can lead to 
reduced gun barrel erosion for both legacy systems and future armaments.  This discovery is 
applicable to every gun system in the Department of Defense inventory, including mortars.  
Furthermore, for the first time propellant formulators have the ability and guidance to produce 
inherently less erosive propellants through energetic ingredient selection.  
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List of Symbols, Abbreviations, and Acronyms 

a Van der Waals intermolecular force constant 

b Van der Waals molecular volume constant 

Cp   specific heat at constant pressure 

h  specific enthalpy 

MW molecular weight 

P pressure 

R ideal gas constant 

S  entropy 

T  temperature 

u  specific internal energy 

V  volume 

ν specific volume 

µ Joule Thomson coefficient 
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